A Cyclic Douglas-Rachford Iteration Scheme
نویسندگان
چکیده
In this paper we present two Douglas–Rachford inspired iteration schemes which can be applied directly to N-set convex feasibility problems in Hilbert space. Our main results are weak convergence of the methods to a point whose nearest point projections onto each of the N sets coincide. For affine subspaces, convergence is in norm. Initial results from numerical experiments, comparing our methods to the classical (product-space) Douglas– Rachford scheme, are promising.
منابع مشابه
The Douglas-Rachford algorithm in the absence of convexity
The Douglas-Rachford iteration scheme, introduced half a century ago in connection with nonlinear heat flow problems, aims to find a point common to two or more closed constraint sets. Convergence of the scheme is ensured when the sets are convex subsets of a Hilbert space, however, despite the absence of satisfactory theoretical justification, the scheme has been routinely used to successfully...
متن کاملLecture 20 : Splitting Algorithms
In this lecture, we discuss splitting algorithms for convex minimization problems with objective given by the sum of two nonsmooth functions. We start with the fixed point property of such problems and derive a general scheme of splitting algorithm based on fixed point iteration. This covers Douglas-Rachford splitting and Peaceman-Rachford splitting algorithms. We also discuss the convergence r...
متن کاملNorm Convergence of Realistic Projection and Reflection Methods
The (2-set) convex feasibility problem asks for a point contained within the intersection of two closed convex sets of a Hilbert space. Projection and reflection methods represent a class of algorithmic schemes which are commonly used to solve this problem. Some notable projection and reflection methods include the method of alternating projections, the Douglas–Rachford method, the cyclic Dougl...
متن کاملThe Douglas-Rachford Algorithm for Weakly Convex Penalties
The Douglas-Rachford algorithm is widely used in sparse signal processing for minimizing a sum of two convex functions. In this paper, we consider the case where one of the functions is weakly convex but the other is strongly convex so that the sum is convex. We provide a condition that ensures the convergence of the same Douglas-Rachford iterations, provided that the strongly convex function i...
متن کاملA New Use of Douglas-Rachford Splitting and ADMM for Identifying Infeasible, Unbounded, and Pathological Conic Programs
In this paper, we present a method for identifying infeasible, unbounded, and pathological conic programs based on Douglas-Rachford splitting, or equivalently ADMM. When an optimization program is infeasible, unbounded, or pathological, the iterates of Douglas-Rachford splitting diverge. Somewhat surprisingly, such divergent iterates still provide useful information, which our method uses for i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Optimization Theory and Applications
دوره 160 شماره
صفحات -
تاریخ انتشار 2014